skip to main content


Search for: All records

Creators/Authors contains: "Poerschke, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work demonstrates an approach using solid state electrochemical cells to study the long-term oxidation of materials at 800 °C. The capability of zirconia-based cells to control the oxygen partial pressure was first evaluated using an empty chamber. For most voltages applied to the pump cell, the steady state sensor voltage matches the pump voltage, leakage rates are low, and response times are short, allowing precise and prompt control over the chamber atmosphere. The technique was validated by measuring the oxidation of niobium and nickel. Niobium was oxidized at pump voltages ranging from 0 mV to +500 mV; decreasing the oxygen partial pressure around the specimen reduces the oxidation rate. Comparing the integrated oxidation rate with the weighed mass gain showed good agreement. Measured oxidation rates for nickel were of order 1μg h−1, illustrating the sensitivity of this technique. For higher oxidation rates, a depression in oxygen partial pressure was observed around the specimen. Improved control over the oxidation potential was achieved by using a sensor cell to dynamically tune the pump voltage. Rates for both metals are compared to literature reports using other techniques.

     
    more » « less
  2. Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Multicomponent oxides have received significant recent attention due to their potential for improved property tunability. In simple structures, compositionally complex oxides can be stabilized by increased configurational entropy and are sometimes called “high entropy” ceramics. In phases with multiple cation sublattices or complex stoichiometries, it is more difficult to achieve high configurational entropy. However, there is limited knowledge about the factors influencing stability and solubility limits in many systems. This study investigated the limits on the stability of rare earth (RE) aluminates containing mixtures of RE cations including Gd, La, Nd, Yb, and Y in cases where (i) a fixed RE:Al ratio attempts to constrain the material into a single‐phase aluminate or (ii) a two‐phase aluminate, and in equilibrium with RE zirconates that readily dissolve multiple RE3+. The results show that it is difficult to form single‐phase, equimolar mixed‐RE aluminates encompassing a range of RE3+sizes. Instead, the RE3+selectively partition into specific phases based on RE‐size trends in the constituent binary systems. The results are discussed in terms of the phase stability and cation partition trends and potential applications.

     
    more » « less
  4. Porous metals represent a class of materials where the interplay of ligament length, width, node structure, and local geometry/curvature offers a rich parameter space for the study of critical length scales on mechanical behavior. Colloidal crystal templating of three-dimensionally ordered macroporous (3DOM, i.e., inverse opal) tungsten provides a unique structure to investigate the mechanical behavior at small length scales across the brittle–ductile transition. Micropillar compression tests show failure at 50 MPa contact pressure at 30 °C, implying a ligament yield strength of approximately 6.1 GPa for a structure with 5% relative density. In situ SEM frustum indentation tests with in-plane strain maps perpendicular to loading indicate local compressive strains of approximately 2% at failure at 30 °C. Increased sustained contact pressure is observed at 225 °C, although large (20%) nonlocal strains appear at 125 °C. The elevated-temperature mechanical performance is limited by cracks that initiate on planes of greatest shear under the indenter. 
    more » « less